Pierwszym krokiem po zainstalowaniu kontrolera jest poprawne podpięcie napięcia wejściowe z paneli (polaryzacja jest istotna, ponieważ z racji nie generowania dodatkowych strat, brak jest zabezpieczenia przed odwróconą polaryzacją). Na wyjście podłączamy na początku tylko woltomierz i potencjometrem regulujemy końcowe napięcie ładowania akumulator (lub w opcji zasilania grzałki - maksymalne napięcie do jakiego kontroler może prądowo wysterować grzałkę, ja np. dla grzałki 24V 300W u siebie, ustawiłem 34V ale z to z racji, że równolegle na grzałkę pracuje również turbina wiatrowa i potrafi ona momentami pracować z sumaryczną mocą 550-600W). Następnie podłączamy odbiornik i w zasadzie to już tyle

Teraz opiszę technikę śledzenia maksymalnego punktu mocy czyli słynnego MPPT. Otóż nieprawdą jest, że do śledzenie maksymalnego punktu mocy musimy mierzyć prąd wejściowy... Możemy oprzeć się tylko o pomiar Voc (czyli tzw. napięcia otwartego obwodu baterii fotowoltaicznej). Proszę zwrócić uwagę, że we wszystkich aktualnie dostępnych ogniw foto (nieważne czy mono, poli, cienkowarstwowem CIGS) relacja Vmp (napięcie w maksymalnym punkcie mocy) do Voc (napięcie na biegu jałowym) wynosi od 0,78 do 0,82 (można więc uśrednić tą wartość i przyjąć równe x0,8). Śledzę/śledziłem od dłuższego czasu codziennie fabryczne algorytmy MPPT w kilu urządzeniach (Tracer 30A MPPT, mikro-inwerter on-grid Enecsys, chińczyk 1kW MPPT) i te mechanizmy niestety bardzo często głupieją np. potrafią się uparcie trzymać dobry kwadrans lub dłużej, nieoptymalnego punktu napięciowego. Wyobrażam sobie również że takie "jeżdżenie" góra-dół z napięciem pracy, porównywanie go w iloczynie z prądem i wybieranie najkorzystniejszego punktu, również powoduje straty w obróbce energii. Istotą pracy ogniw fotowoltaicznych jest to, że nieważne od nasłonecznienia, maksymalny napięciowy punkt pracy tak naprawdę zmienia się niewiele, a istotnie za to (w zależności od aktualnej wartości W/m2 zmienia się prąd jaki panel oddaje. Optymalny punkt pracy napięciowej zmienia się głównie w korelacji z aktualną temperaturą pracy ogniw krzemowych. Parametr temperaturowy daje nam za to również wynik w postaci zmiany Voc, które wystarczy precyzyjnie, cyklicznie mierzyć i aktualizować zgodnie z tym Vmp. W moim kontrolerze aktualizacja pomiaru Voc występuje co ok. 30minut i jest to moim zdaniem interwał wystarczający (na bardzo krótki czas obwód jest rozłączany, mierzone jest Voc i następuje aktualizacja Vmp).
Poniżej kilka cech mojej konstrukcji:
- całość wykonana na laminacie jednostronnym typu MCPCB z rdzeniem aluminiowym, (przyklejona klejem termo-przewodzącym do radiatora)
- użyte wysokiej jakości komponenty elektroniczne np. dwie potrójne bariery diodowe na diodach SBR (równolegle 3x 15A 100V). Zmierzony spadek napięcia na zespole bariery wyjściowej 0,40V przy prądzie 13A.
- 2 klucze MOSFET pracujące równolegle, ze sporym zapasem mocy (RdsON 8mOhm na tranzystor).
- kondensatory w sekcji wejściowej i wyjściowej nisko-impedancyjne, typu long-life + ceramiczne)
- dławik mocy DTMSS by Feryster
- zabezpieczenie temperaturowe (urządzenie wyłączy się jeśli całość dobije do 80st C).
- złącza prądowe na tanich i popularnych złączkach płaskich 6,3mm
Poniżej filmik z pracy z dwóch paneli 245W połączonych szeregowo przy zasilaniu grzałki 24V 300W. Górny monitor pokazuje parametry wyjściowe, dolny woltomierz i amperomierz pokazuje wejście.
[youtube]https://www.youtube.com/watch?v=Vx5ViF6 ... e=youtu.be[/youtube]
PS. Zapomniałem dodać, że w finalnej wersji będzie jeszcze 2-pinowe złącze gold-pin (domyślnie zwarte zworką) w które będzie można wpiąć termostat NC o np. wartości rozwarcia obwodu po osiągnięciu 70-80st. Termostat można przykleić klejem termo do metalowej kryzy z grzałkami w bojlerze. Po osiągnięciu temperatury zadziałania termostatu kontroler się wyłączy, zaprzestając grzania wody. U siebie testuję takie rozwiązanie z tym, że termostat rozłącza przekaźnik SSR i sprawdza się to bardzo dobrze.